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ABSTRACT

This thesis describes the creation and testing of a lightweight, interpretable machine-learning
framework for anomaly detection in the VAWT-X vertical-axis wind turbine at Flinders University. The
project aims to improve condition monitoring and lay the groundwork for predictive maintenance and

eventual digital twin integration in small-scale renewable energy systems.

The research was conducted in two stages: offline model training and real-time deployment. Sensor
data (torque, RPM, current, power, and vibration) were obtained under both normal and induced-
fault circumstances. Features were generated using rolling-window averaging and z-score
normalization, with residual vibration features supplied by a Random Forest regressor. Five Logistic
Regression classifiers were designed to detect electrical, aerodynamic, vibration, power shortfall,
and RPM sensor defects. To ensure alert stability, the probability outputs were filtered using static

thresholds and a three-of-five hysteresis rule.

Offline testing showed high classification accuracy, with the Power Deficit detector earning an F1
score more than 0.9, proving the viability of the suggested approach. The Power Deficit detector
successfully identified thirty-seven separate load variation events during the real-time testing, which
was conducted using a MQTT-based data stream, demonstrating live inference capacity. Other
detectors remained inactive due to data alignment and scaling issues, emphasizing the significance

of schema verification and adaptive calibration in operational settings.

Although the initial project scope included complete digital twin integration via the XMPro platform,
limited turbine readiness and data availability prompted a shift toward model creation and real-time
testing. This move enabled more in-depth investigation of anomaly detection logic, as well as the

successful demonstration of an autonomous edge-deployable maintenance architecture.

The study indicates that interpretable, low-complexity models can efficiently detect early turbine
failures without using cloud computing or black-box techniques. The findings lay a solid platform for
future integration into digital twin systems and promote intelligent predictive maintenance in

distributed renewable energy applications.
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CHAPTER 1: INTRODUCTION

1.1 Background and Context

The growing global demand for renewable energy has sparked the interest in solutions to make
small-scale wind turbines more efficient and more reliable. Predictive maintenance is a prominent
part of this objective, as it allows operators to find and fix problems before they cause downtime or
mechanical failure. Machine learning is increasingly being used in modern wind turbine monitoring
systems to make sense of sensor data and find problems in real time. However, most of the research
and commercial uses right now are focused on big horizontal-axis wind turbines. This leaves a gap
in knowledge and tools for smaller vertical-axis turbines, which have different aerodynamic and

structural behaviours.

The VAWT-X vertical-axis wind turbine at Flinders University serves as a testing environment for
developing small-scale predictive maintenance models. VAWTSs, being mechanically simpler than
horizontal-axis turbines and can operate in all directions, make them ideal for scattered or urban
deployments. However, their non-stationary vibration patterns, varied torque behaviour, and distinct
aerodynamic responses provide obstacles for condition monitoring. This study solves these issues

by creating a lightweight anomaly detection framework tailored for the VAWT-X system.

1.2 Project Aim and Objectives

The primary aim of this project is to create and test a machine-learning framework for identifying
mechanical, electrical, and aerodynamic anomalies in the VAWT-X flinders turbine. The technology
is designed to function in real time with and serve as a platform for integration into a digital twin

environment.
The main project objectives are as follows:

1. Gather datasets consisting of various baseline/anomalous states, preprocess and prepare
this data for training.

2. Train and evaluate interpretable machine learning models that can detect various faults from
the limited datasets.

3. Develop a real-time deployment pipeline that utilizes MQTT for live inference and alarm
generation.

4. Assess model performance using both offline validation and live testing, including
dependability, latency, and accuracy.

5. ldentify limits and develop design recommendations for future digital twin integration.



1.3 Project Scope and Evolution

The project's initial goal was to produce a fully fleshed digital twin and predictive maintenance system
for the VAWT-X turbine using the XMPro platform. Early in the development process, it became clear
that turbine readiness and insufficient testing data would make this scope unachievable given the
project timespan. Due to this, the project’s focus was narrowed down to largely focus on the

development of the anomaly detection system, with digital twin integration set as a future goal.

This scope shift necessitated a thorough overhaul of the project strategy and methods. Early
literature and design work focused on digital twin architecture were changed to allow for a more
technical examination of model training, deployment, and real system performance. Although this
change restricted the scope of deliverables, it allowed for more technical validation of the suggested
machine-learning approach. The resulting architecture is a basic stage of the bigger digital twin idea,

which will continue to be developed upon after this project.

1.4 Research Significance

This experiment demonstrates that simple, transparent models can be used to discover faults in an
accurate and explainable manner, rather than complicated black-box methods. The interpretability
of Logistic Regression enables turbine operators to comprehend which variables contribute to
detected abnormalities, hence increasing trust in the system's choices. The employment of a
Random Forest regressor to create residual vibration characteristics improves sensitivity to

mechanical imbalance while being computationally efficient.

The creation of this framework contributes to ongoing research in small-scale renewable energy
monitoring by offering a deployable, edge-compatible solution. It demonstrates how academic
research in anomaly detection can be converted into a working system that can be integrated into

larger industrial monitoring structures such as digital twins.

1.5 Thesis Structure

The remainder of this thesis is structured as follows:

e Chapter 2: Reviews literature on predictive maintenance, machine learning for anomaly
detection, and condition monitoring of vertical-axis wind turbines.

o Chapter 3: Discusses the methodology used to design, train, and implement the anomaly
detection framework.

o Chapter 4: Presents the results of both offline and real-time evaluations.



Chapter 5: Discusses the results in relation to the project’s objectives and reflects on its
challenges and implications.
Chapter 6: Concludes the thesis and provides recommendations for future work, including

full digital twin integration.



CHAPTER 2: LITERATURE REVIEW

2.1 Machine Learning for Wind Turbine Fault Detection

Machine learning (ML) has altered how defects in wind turbines are found, moving away from
traditional rule-based Supervisory Control and Data Acquisition (SCADA) monitoring and toward
predictive, data-driven analysis. Early systems used fixed thresholds for factors including torque,
temperature, and rotational speed, triggering alarms when values exceeded predefined limitations
(Gigoni et al., 2019). Although simple to implement, these algorithms overlooked nonlinear
interactions between turbine variables, resulting in false alarms or missing early problems (Zhang,
Hu, & Yang, 2022).

2.1.1 Logistic Regression

Logistic Regression (LR) is still a popular baseline for condition monitoring because of its simplicity
and transparency. It estimates fault likelihood by assigning interpretable coefficients to quantifiable
variables like current, torque, and wind speed (Ng & Lim, 2022). Recent reviews highlight Logistic
Regression as a transparent baseline for small or moderately sized SCADA datasets, though
reported accuracies vary widely depending on data quality and feature selection (Nejad Alagha et
al., 2025). However, LR's linear structure limits its capacity to capture nonlinear dynamics, making it

less suitable for complicated fault interactions (Mohapatro et al., 2025).

2.1.2 Random Forest and Ensemble Learning

Random Forest (RF) and ensemble learning techniques address this limitation by combining
numerous decision trees to describe nonlinear relationships and handle noisy input. Transfer-
learning approaches, such as TrAdaBoost, have been proven to increase cross-turbine fault
classification accuracy by adjusting information between turbines operating under different
conditions (Chen et al., 2021). RF's variable importance measures also aid in identifying critical fault
predictors, allowing for more accurate physical interpretation of model results (Pedro & Gonzalo,
2021). Hybrid frameworks that combine RF and deep models have improved performance by
employing RF for coarse classification and neural networks for temporal refinement (Allal et al.,
2024).

2.1.3 Isolation Forest and Unsupervised Anomaly Detection

Isolation Forest (IF) is an unsupervised method that is appropriate for settings with few labelled
samples. It isolates anomalies using recursive data partitioning, making it ideal for finding unusual
or previously unknown problems (McKinnon et al, 2021). While IF may effectively identify outliers in
dynamic situations, it is still sensitive to parameter scaling and lacks interpretability when compared

to supervised models.



2.1.4 Deep Learning and Temporal Modelling

Deep learning, particularly with LSTM architectures, allows for the modelling of time-dependent
behaviour across various sensor systems. Zhang et al. (2022) used an LSTM-based model to
capture temporal relationships within SCADA signals, achieving strong fault-diagnosis performance.
Despite their accuracy, such networks are computationally expensive and frequently inappropriate

for small-scale or embedded installations that demand transparency (Ng & Lim, 2022).

2.1.5 Comparative Evaluation

Hybrid frameworks that combine vibration signal feature engineering with machine-learning
classifiers increase fault sensitivity and diagnostic accuracy in drivetrain applications (Jamil et al.,
2025). These methods combine physical signal analysis and data-driven learning to achieve a
balance of accuracy and interpretability. These findings direct the ongoing research toward
lightweight, explainable models that can operate successfully within the data limits of small-scale

turbines.

2.2 Machine Learning Models in Vertical-Axis Wind Turbine (VAWT)
Applications

While machine learning has become a cornerstone of fault detection in horizontal-axis wind turbines
(HAWTS), its application to vertical-axis wind turbines (VAWTS) is still limited. The aerodynamic,
structural, and operational variances across different turbine types make it difficult to generalize
existing diagnostic tools. HAWT drivetrain experiments have underlined the necessity of vibration
and torque signal preprocessing for reliable defect detection (Jamil et al., 2025). As a result,
algorithms created for HAWTs frequently underperform when applied to VAWT data without

considerable feature engineering and retraining.

Early VAWT fault detection research was mostly focused on vibration-based or threshold-driven
monitoring systems. Monitoring systems based on fixed thresholds often failed to differentiate normal
operating variability from early signs of component degradation (Gigoni et al., 2019; Moghaddass &
Rudin, 2015). The use of machine learning models dramatically enhanced detection accuracy by
incorporating multi-sensor data such as torque, current, and wind speed. Logistic Regression
remains a popular and interpretable baseline for fault classification in small datasets (Alagha et al.,
2025).

Recently, researchers have investigated hybrid and deep learning methods for dealing with the
temporal and nonlinear nature of VAWT data. Long Short-Term Memory (LSTM) architectures and
convolutional neural networks (CNNs) have demonstrated promising results in detecting early

electrical and aerodynamic problems (Wang et al., 2025). Feature-level signal processing, such as
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empirical mode decomposition and wavelet analysis, improves the sensitivity of machine learning
classifiers (Jamil et al., 2025). Transfer learning techniques have also evolved as a tool for adapting
pretrained models from large HAWT datasets to smaller VAWT contexts, eliminating the need for

considerable local training data (Chen et al., 2020).

Recent experiments have expanded fault diagnosis to structural components like turbine blades.
Esquivel-Sancho et al. (2025) used finite-element simulation and modal testing data to detect
fractures and delamination in 3D-printed scaled wind turbine blades. The combination of vibration-
mode data with machine-learning classifiers resulted in accurate distinction of healthy and damaged

blades, demonstrating the potential of Al-assisted structural health monitoring.

Despite these advancements, difficulties remain. Environmental noise, sparse datasets, and
aerodynamic variability continue to impede accurate real-time performance (Moshtaghi et al., 2025;
Ng & Lim, 2022). As a result, lightweight and interpretable models like Logistic Regression and
Random Forest remain the most useful for embedded turbine diagnostics. These techniques strike
a balance between detection accuracy, interpretability, and computational simplicity, reflecting the
continued attention on optimizing machine learning algorithms through hyperparameter tuning to
obtain high accuracy and robustness on turbine fault datasets (Mohapatro et al., 2025; Alagha et al.,
2025).

2.3 Challenges, Gaps & Future Research Considerations

While machine learning algorithms have produced outstanding results in wind turbine defect
detection, several persisting obstacles prevent their widespread use for small-scale vertical-axis
wind turbines (VAWTSs). The most pressing concerns include data scarcity, limited model
transferability, and the necessity for interpretable algorithms that can work in real time (Alagha et al.,
2025; Ng & Lim, 2022).

2.3.1 Data Availability and Quality

High-quality, labelled data are required for accurate ML model training, but such datasets are
uncommon for VAWTs. Most publicly available turbine data originate from big horizontal-axis
systems (Gigoni et al., 2019; Chen et al., 2020). Small-scale systems frequently rely on brief
laboratory experiments or synthetic fault injections, limiting model generality. Furthermore, signal
noise and missing data generated by turbulence or sensor drift obscure fault details and weaken
model resilience. To address these issues, researchers have proposed data augmentation and
adaptive signal decomposition techniques, such as wavelet filtering and empirical mode

decomposition, which preserve transient fault characteristics while mitigating noise (Wang et al.,



2025; Moshtaghi et al., 2025). These tactics increase data diversity and model stability under

dynamic situations.

2.3.2 Model Transferability and Generalisation

Even well-trained models frequently fail when applied to new turbines or changing environmental
circumstances. Structural variances, wind regime changes, and sensor discrepancies all affect data
distributions, highlighting that drivetrain models often generalise poorly when applied to different
turbines without additional tuning (Jamil et al., 2025). Transfer learning and domain adaption
approaches provide partial solutions by fine-tuning pretrained models on smaller, local datasets
(Chen et al.,, 2020). Combining physical turbine equations with data-driven models enhances
generalization by incorporating domain information into the learning process (Pedro & Gonzalo,
2021). Hybrid physical-data models are as such regarded as an important path for improving

dependability across various turbine configurations.

2.3.3 Explainability and Integration into Operations

Model transparency is still critical for industrial implementation. Operators want models that not only
predict problems but also explain which sensor features affected their predictions. While algorithms
like Logistic Regression and Random Forest produce interpretable results, deep learning techniques
like LSTMs are sometimes viewed as opaque. Explainable Al (XAl) techniques, such as Digital Twins
(DT), have been integrated into turbine diagnostics to attribute forecasts to key variables, hence

enhancing trust and utility (Nejad Alagha et al., 2025).

2.3.4 Future Research Directions

These challenges underscore the need for research on hybrid, interpretable, and edge-compatible
machine learning systems that can work successfully with limited data. Creating open-access VAWT
datasets, using physics-based reasoning, and building models that balance accuracy with
explainability represents the next significant step toward providing comprehensive predictive

maintenance for distributed wind energy assets.

2.4 Summary of Reviewed Literature

The reviewed study shows that machine learning has become an essential component of current
wind turbine status monitoring. ML models outperform traditional threshold-based methods in
recognizing complicated, multidimensional relationships within turbine data and identifying early-
stage problems. Logistic Regression, Random Forest, Isolation Forest, and Long Short-Term
Memory (LSTM) networks have all demonstrated excellent diagnostic performance in a variety of

turbine systems (Nejad Alagha et al., 2025; Wang et al., 2025). Among these, Logistic Regression



and Random Forest are especially useful in small-scale or resource-constrained environments
because they combine interpretability, computational economy, and predictive capabilities for fault
monitoring in SCADA-based systems (Yimam et al., 2025; see also Gigoni et al., 2019 for a large-

scale PdM implementation).

Despite these achievements, the literature suggests that there are still significant barriers to the
actual application of machine learning (ML) in vertical-axis wind turbines. The non-stationary nature
of VAWT data, which exhibit cyclic torque and asymmetric aerodynamic loading, affects both model
training and real-time reliability (Pedro & Gonzalo, 2021; Ng & Lim, 2022). Deep-learning approaches
have significant temporal modelling skills, but they require large amounts of data and sophisticated
hardware, limiting their use to small turbines. Lightweight, interpretable models that can learn quickly

from small datasets remain the most promising for field-level monitoring.

Researchers continually highlight the importance of open, standardized datasets in accelerating
development and promoting reproducibility. Studies also highlight the possibility of hybrid physical-
data models that incorporate mechanical and aerodynamic knowledge into ML frameworks, hence
enhancing generalization and fault explainability (Allal et al., 2024; Wang et al., 2025). Recent
research proposes that explainable Al techniques, such as feature attribution approaches, can close
the gap between high-performance models and operator trust by giving clear reasoning for anomaly

detections.

In conclusion, the literature demonstrates a strong need for research into interpretable, data-efficient
ML frameworks specifically designed for small VAWTs. Future systems can provide scalable,
explainable, and real-time diagnostic solutions for distributed renewable energy networks by
overcoming data quality, transferability, and transparency concerns. Building on these findings, the
following chapter describes the experimental and methodological framework used in this
investigation of the VAWT-X turbine.



CHAPTER 3: METHODS

3.1 System Description
3.1.1 Overview of the VAWT-X Platform

The research was conducted on the VAWT-X vertical-axis wind turbine (VAWT) at Flinders
University's Renewable Energy Test Facility in Adelaide, South Australia. The turbine provides a
controlled environment for conducting data-driven fault analysis and anomaly detection research.
Unlike traditional horizontal-axis turbines, VAWTs run omnidirectionally and have distinct torque and

vibration patterns, making defect detection difficult (Pedro & Gonzalo 2021).

The VAWT-X system included an integrated sensor suite capable of monitoring mechanical,
aerodynamic, and electrical performance characteristics. The variables measured were rotational
speed (RPM), torque, current, voltage, power output, and triaxial vibration. Each signal was routed
to a local data acquisition workstation via a BK8601 interface module, which translated sensor
readings to digital format for processing. Sampling frequencies varied between 1 and 10 Hz
depending on the signal type, in accordance with conventional settings in small-scale turbine testing
(Chen et al. 2020; Yimam et al. 2025).

The turbine's control system supported both steady-state and fault simulations, allowing for the
creation of labelled datasets. Each experimental session was intended to collect representative data

for both the baseline (normal) and induced-fault situations.

Figure 3.1: VAWT-X Wind Turbine Station - Turbine and Local Computer in shot.



3.2 Experimental Setup

3.2.1 Location, Timing, and Assumptions

All experimental trials on the VAWT-X turbine were carried out at Flinders University in September
and October of 2025. It was assumed that the turbine's mechanical and electrical components were
operational throughout baseline sessions, and that any anomalies introduced were indicative of real-

world fault behaviour.

3.2.2 Experimental Design
The experiments were divided into two primary phases:

Phase 1 Offline Evaluation: controlled data collection and model training using baseline and

induced-fault datasets.
Phase 2 Real-Time Deployment: live data streaming, model inference, and alert logging via MQTT.
Each trial lasted between ~12 minutes depending on the fault condition. Fault scenarios included:

e Electrical Fault: simulated short-circuit and unbalanced current load.

e Aerodynamic Disturbance: partial blade obstruction and wind-flow interference.
e Vibration Fault: artificial imbalance introduced via calibrated mass offset.

o Power Deficit: induced through load reduction on the turbine output.

¢ RPM Sensor Fault: simulated sensor dropout or drift.

Figure 3.2: Example of induced anomaly during test - aerodynamic disturbance using bubble wrap

on turbine blade.
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3.2.3 Equipment Calibration and Testing

All sensors were calibrated in accordance with manufacturer specifications by the on-campus turbine
engineer responsible for the maintenance of the VAWT-X system. Data collection scripts were then
executed in Python (v3.10) using the pandas, NumPy, and matplotlib libraries to test and acquire the

appropriate datasets required for the project.

3.3 Data Acquisition
3.3.1 Data Collection Protocol

Data collection followed a consistent technique throughout all experimental sessions. The turbine
was initially run at baseline circumstances for a couple minutes to establish steady-state behaviour.
Manually created defects were then sustained for predetermined periods of time until normal
operation resumed. Each session created a time-series dataset with synchronized readings from all

SEensors.

The data was saved in comma-separated values (CSV) format with timestamped entries. Overall,
11 test sets were recorded, with 4 baseline datasets at varying windspeeds, as well as 7 anomaly

induced sets. All Data Acquisition and testing notes can be found in Appendix 6:

a Test 1- High Wind Base.csv 04/09/2025 9:30 pm Microsoft Excel Com... 1,019 KB
& Test 2- Mid Wind Base.csv 04/09/2025 9:30 pm Microsoft Excel Com... 1,017 KB
’ﬁ Test 3- Low Wind Base.csv 04/09/2025 9:30 pm Microsoft Excel Com... 1,018 KB
a Test 4- Variable Wind Base.csv 04/09/2025 9:30 pm Microsoft Excel Com... 758 KB
K Test 5- Balanced Short Circuit Fault.csv 04/09/2025 9:30 pm Microsoft Excel Com... 631 KB
’ﬁ Test 6- Balanced Open Circuit Fault.csv 04/09/2025 9:30 pm Microsoft Excel Com... 590 KB
& Test 7- Unbalanced Open Circuit Fault.csv 04/09/2025 9:30 pm Microsoft Excel Com... 737 KB
& Test 8- Unbalanced Short Circuit Fault (Line-..  04/09/2025 9:30 pm Microsoft Excel Com... 759 KB

a Test 9 - rpm sensors malfunction.csv 04/09/2025 9:30 pm Microsoft Excel Com... 408 KB

T Test 10- disturbance in aerodynamic blade.c..  04/09/2025 9:30 pm Microsoft Excel Com... 226 KB

& Test 11-imbalance in weight (adding weight)... 04/09/2025 9:30 pm Microsoft Excel Com... 344 KB

Figure 3.3: The 11 Collected Test Data Sets, including 4 baseline sets (1-4) as well as 7 anomalous
sets (5-11)
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A B C ] E 3 G H | J K L M N o P
Timestam Sensors/T Sensors/V Sensors/r|Sensors/B Sensors/B Sensors/B Sensors/B Sensors/B Sensors/B Sensors/V Sensors/V Sensors/\ bkB601/vo bkB601/cL bkB601/pow

HEBRR 0.0132 0 0
#HHEE -0.02990 -151.46 6.27 9.41 1803  0.0132 0 0
#sEHE -0.0274 0.3 2.05 0 -126.02 -181.89 -201.13 -156.7  -151.38 -3.92 10.19 2036 0.0132 0 0
sussgsEE  -0.0274 0.3 2.05 0 -126.02 -181.89 -201.13 -156.7  -151.38 -3.92 10.19 2038  0.0135 0 0
#HEEAH -0.03321 0.3 2.05 0 -126.02 -181.89 -201.13 -156.7  -151.38 -3.92 10.19 2038 0.0139 0 0
HHHEHE -0.03704 0.31 2.05 0 -12591 -182.05 -201.07 -156.74 -151.44 -5.49 10.19 20.38  0.0135 0 0
#HEEEHE -0.03336 0.3 2.05 0 -12591 -182.05 -201.07 -156.74 -151.44 -5.49 10.19 2117 0.0132 0 0
#ussgsgs -0.03023 0.31 2.05 0 -12591 -182.05 -201.07 -156.74 -151.44 -5.49 10.19 2117 0.0132 0 0
#HEERH -0.02797 0.3 2.05 0 -12591 -182.05 -201.07 -156.74 -151.44 -5.49 10.19 2117 0.0135 0 0
HHH -0.03378 0.31 2.05 0 -12591 -182.05 -201.07 -156.74 -151.44 -5.49 10.19 2117 0.0135 0 0
#HEEEHE -0.04045 0.33 2.05 0 -12599 -161.97 -201.02 -156.63 -151.32 4.7 5.62 2195  0.0135 0 0
#uusgsEs -0.03378 0.33 2.05 0 -12599 -181.97 -201.02 -156.63 -151.32 A7 8.62 2195  0.0132 0 0
#EEERH -0.02081 0.32 2.05 0 -125.99 -181.97 -201.02 -156.63 -151.32 -4.7 5.62 2195 0.0132 0 0
R -0.03421 0.33 2.05 0 -12594 -182.06 -201.11 -156.63 -151.32 4.7 8.62 2195 0.0132 0 0
#EEEEREE -0.02343 0.35 2.05 0 -12594 -182.06 -201.11 -156.74 -151.27 -3.92 5.62 2117 0.0132 0 0
#usigsEs -0.02343 0.35 2.05 0 -12594 -182.06 -201.11 -156.74 -151.27 -3.92 8.62 2117 0.0135 0 0
#EEEERH -0.02414 0.34 2.05 0 -12594 -182.06 -201.11 -156.74 -151.27 -3.92 5.62 2117 0.0135 0 0
HEHR -0.02456 0.35 2.05 0 -126 -181.94  -201.02 -156.69 -151.38 6.27 7.84 1882  0.0132 0 0
#HEEEHE -0.02456 0.35 2.05 0 -126 -181.94  -201.02  -156.69 -151.38 6.27 7.64 1862  0.0132 0 0
#ussgags -0.03208 0.34 2.05 0 -126  -181.94 -201.02 -156.69 -151.38 -6.27 7.84 1882  0.0132 0 0
#EEER -0.02967 0.33 2.05 0 -126 -181.94  -201.02 -156.69 -151.38 -6.27 7.84 1882  0.0135 0 0
#HHHRE -0.03619 0.35 2.05 0 -12597 -181.93 -201 -156.71 -151.37 -5.49 7.84 1882  0.0135 0 0
#ERERHE -0.03222 0.35 2.05 0 -12597 -1581.93 -201 -156.71 -151.37 -5.49 7.64 196  0.0133 0 0
#usagss -0.02995 0.34 2.05 0 -12597 -181.93 -201 -156.71  -151.37 -5.49 7.84 196 0.0133 0 0

0 0 0

#EBER -0.02098 0.35 2.05 -125.9  -181.91 -200.94 -156.49 -151.29 -5.49 7.84 196  0.0133

Figure 3.4: CSV Snapshot of data fields in test set (Test 1 — Baseline Low);

3.3.2 Pre-Processing and Feature Extraction

Raw data underwent a standardized pre-processing phase. A 60-sample rolling window was used
to calculate local means and standard deviations for all signals, smoothing out high-frequency noise

while maintaining operational patterns (Jamil et al. 2025).

Each variable was standardized to a z-score, which was calculated as:

X — U

Z=X—UozZ = =o0ox—U
where x represents the observed signal, u the baseline mean, and ¢ the baseline standard deviation.
This transformation enabled models to detect departures from normal conditions, as shown in

previous turbine fault detection investigations (Wang et al. 2025; Yimam et al. 2025).

To improve the system's ability to detect mechanical imbalance, a Random Forest regressor was
trained using baseline data to predict predicted vibration magnitudes based on contextual factors
such as wind speed, torque, and power. The residual-based vibration function detects minor
variations indicating underlying degradation. While the current approach employs a data-driven
residual model, comparable concepts for tracking latent degradation progression have been
formalized in dependability models such as the Latent State Hazard framework (Moghaddass &
Rudin, 2015).

3.3.3 Data Cleaning and Integrity Checks

Data quality checks were performed prior to model training. Missing data produced by brief sensor
interruptions were linearly interpolated when the intervals were less than five consecutive samples.

Longer gaps were excluded to avoid distortion, outliers higher than three standard deviations from
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the baseline mean were capped. The final collection included thousands of tagged feature vectors,
each representing a snapshot of turbine state. The dataset was separated over 70% training and

30% validation, ensuring class balance across baseline and fault situations.

3.4 Data Analysis

3.4.1 Model Development

Machine learning was utilized to identify each time frame as "normal" or "faulted." Five separate
Logistic Regression classifiers were created, one for each type of fault. Logistic Regression was
chosen for its interpretability and efficiency on tiny datasets, which is consistent with findings from
comparative ML assessments that show lightweight models are competitive for fault classification
(Mohapatro et al., 2025).

For the vibration features, the Random Forest regressor was employed as a feature generator rather
than a classifier, resulting in the previously stated residual-based input. This hybrid strategy is
consistent with current ML frameworks that combine coarse fault detection with subsequent fault
type identification, improving interpretability and diagnostic accuracy (Zaid Allal et al., 2024; Jamil et
al., 2025).

3.4.2 Model Training and Validation

Training was carried out on a local workstation using Python and open-source libraries. Models were
validated with five-fold cross-validation, which provided a reliable estimate of generalization

performance. Precision, recall, and F1 score were among the evaluation indicators used.

.. TP
Precision =
TP + FP
TP
Recall =
TP + FN

F1= 2 - (Precision - Recall)
Precision + Recall

These metrics allowed quantitative comparisons between detectors and were chosen for their
prevalence in turbine fault detection studies (Yimam et al. 2025; Zhang, Hu, & Yang 2022).
Performance findings were visualized using ROC curves and confusion matrices, which provided

information about classification thresholds and misclassification rates.

3.4.3 Threshold Calibration and Alert Logic

The continuous model probability outputs were transformed into binary warnings with static

thresholds. Thresholds were defined using 95th percentile probabilities from the baseline dataset. A
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3-of-5 hysteresis filter was used, and three consecutive samples above the threshold resulted in a

continuous warning. This logic enhanced alert stability while reducing transient noise.

During live deployment, the Power Deficit model threshold was manually changed from 0.93 to 0.85
to improve sensitivity in changeable wind situations. This real-time calibration demonstrated the
viability of adaptive thresholding; a strategy found in other turbine monitoring systems to improve
recall (Zaid Allal et al. 2024; Wang et al. 2025).

3.5 Real-Time Deployment
3.5.1 System Integration via MQTT

Following validation, the models were deployed via a MQTT-based pipeline for real-time anomaly
detection. The system subscribed to real-time topics like Sensors/rpm, Sensors/torque,
Sensors/current, and Sensors/power. Each incoming message was processed and converted into
feature values like those used during training, as well as predictions were computed locally on the
workstation every second. Each detector's probability, threshold, and alert statuses were included
in the output. The results were appended to a CSV log file and shown using an accompanying
dashboard.

The pipeline successfully maintained a consistent throughput of roughly 1 Hz, demonstrating its
applicability for real-time monitoring. Although typographical and feature alignment issues prevented
all models from running simultaneously, the Power Deficit detector generated consistent and relevant

alerts in response to actual power dips.

Turbine Sensors:
+ RPM sensor
= Torque sensor
= Power [ Current sensor
= Vibration sensor
= Wind speed sensor

MGQTT Broker:
* Publishes sensor data on
topics
(e.g., Sensors/rpm,
Sensorsftorque)

Python Inference Script

= Subscribes to MQTT topics

» Computes rolling features in Alert Logging and
real time- Visualisation:

= Applies Logistic Regression = Writes probabilities and alerts
models — to CSV log

= Performs thresholding and = Provides probability traces
hysteresis logic and alert durations

= Generates alert flags and
probabilities
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Figure 3.5: Real-time MQTT inference and alert pipeline architecture:

3.5.2 Data Logging and Post-Processing

Every real-time inference result was timestamped and logged. Post-run scripts combined alert

frequency, duration, and probability distributions. This logging enabled the quantitative validation of

live performance as well as the correlation of model output to measured turbine activity.

A visual check of the live Power Deficit Probability Trace validated the system's capacity to track

power variations in real time. Other detectors remained dormant owing to configuration mismatches

but were kept for future integration.

3.6 Planning Items

3.6.1 Risk Assessments

Risk assessments were carried out for both safety and project performance. Physical hazards

included moving turbine blades, electrical exposure, and vibration threats. The table below shows

each risk and its mitigating options.

Table 3.1: Risk Assessment Table (Refer to risk assessment matrix in Appendix 4)

Hazard

Mitigation Strategy

Impact

Probability

Risk

Risk | Risk Type
ID

Description
R1 Rotational Both turbines A safe-distance High Low Medium
Hazard presented strategy was
potential implemented during
entanglement or | the operation of the
contact risks. wind turbine.
R2 | Electrical Hazard | Risk of electrical | All equipment was High Low Medium
shock from faulty | checked before use,
cabling or open lab protocols
terminals. followed.
R3 | Thermal Hazard In thermal stress | All tests were Medium Medium Medium
trials, directed supervised, and
heat could thermal sources
cause burns or were kept at safe
fire risk. distances.
R4 | Sensor Failure Sensor failure or | Redundant backups, | High Medium
data corruption dual logging to SSD
+ cloud
R5 | Data Inconsistent Optimise code to Medium Medium
inconsistencies data availability [ omit inconsistencies
R6 | Model Overfitting | Model overfitting | Cross-validation, High Medium
occurs when dropout layers, early
training on the stopping, re-asses
gathered data reconfiguration
R7 | Project Delays Integration dela | Early testing with Medium Low Low
mock data,
staggered
deployment
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R8 | Computational Real-time Optimise models, re- | High Low Medium
Resource models asses model usage
Limitation deployed may and project goals.
exceed
processing
capacity.
R9 | Data Labelling Fault labels from | Synchronize manual | Medium Low Low
Ambiguity lab trials could logs with
be misaligned timestamps; use
with sensor logs, | written notes during
leading to poor trials for cross-
model verification.
performance.
R10 | Al Model Al Model Implement Multiple Medium Low Low
Accuracy accuracy is poor, | Models
leading to low
quality anomaly
detection
R11 | Time Constraints | Time limit is Focus on MVP Medium Medium Medium
exceeded, with (Minimal Viable
an incomplete Product)
product

3.6.2 Project Timeline

The project was divided into two university semesters, with key milestones and deliverables timed
to correspond with hardware availability, assessment dates, and software development cycles. The
Gantt chart in Appendix 5 visualizes the initial project chronology, whereas Figure3.6 Below
demonstrates the updated one. The project kicked off in Semester 1 with a literature review and
proposal session, followed by system setup and familiarization. Based on turbine sensor installation,
data stream generation, visualisation in XMPro, and data collecting would take place at the start of
semester 2. The integration of artificial intelligence and predictive maintenance (PdM) models would
continue in Semester 2 until the scope changed due to limited data and turbine installations, shifting
the project's focus to anomaly detection. This necessitated further investigation and planning.

Assessments, including results, thesis and viva, were set for the end of the semester.
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Gantt Chart
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Results .
Thesis .
Viva Voce .

Figure 3.6: Project Timeline Gantt Chart (Updated)

3.6.3 Ethical and Sustainability Considerations

Because there was no personal or confidential data involved in the study, ethical approval was
unnecessary. From a sustainability standpoint, the study corresponds with renewable energy

optimisation objectives by prolonging turbine life and lowering maintenance-related resource use.

3.7 Sources of Experimental Error

Sensor noise was the most common source of inaccuracy. To counteract these effects, rolling
averages and hysteresis filters were used, and repeated trials were carried out to assure
representative outcomes.

Human error during configuration and deployment, particularly typographical errors in topic names,
contributed to the model's inactivity. To avoid this from happening again, future versions of the

system will incorporate schema verification scripts.

3.8 Chapter Summary

This chapter describes the experimental methodologies, analytical methods, and deployment
processes utilized to create the VAWT-X anomaly detection framework. The study integrated
interpretable Logistic Regression models with residual feature improvement, trained and validated
using controlled trials, then deployed over MQTT for real-time inference. The system assured

reproducibility by providing detailed documentation of equipment, calibration, and software tools.
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Although data and time constraints limited full multi-model deployment, the implemented technique
demonstrated technological capability and laid the groundwork for future extension into a complete

digital twin system.

CHAPTER 4: RESULTS

4.1 Experimental Setup and System Description

The VAWT-X anomaly detection framework was tested in two phases: offline using controlled
baseline and induced-fault datasets, and real-time deployment using live data streaming from the
turbine via MQTT. The test sought to demonstrate the framework's ability to detect operational
problems and disturbances in small-scale vertical-axis wind turbines (VAWTSs) using

understandable, low-complexity machine learning models.

The system architecture adhered to the design given in Chapter 3. Sensor data were collected from
the VAWT-X turbine at Flinders University's renewable energy plant, and included measurements of
wind speed, rotational speed, torque, power, current, and vibration. Data were pre-processed with a
rolling 60-sample average window to smooth noise and capture short-term trends before being
standardized using z-score normalization. In addition to these foundation features, a Random Forest
regression model was trained to predict expected vibration levels, allowing the computation of
residual vibration errors (z_vib), a sensitive indicator of mechanical imbalance. These processed
features were then fed into five Logistic Regression (LR) classifiers, each of which corresponded to

a different fault category: electrical, aerodynamic, vibration, power shortfall, and RPM sensor faults.

For both offline and live testing, fault probabilities were translated into binary alarm signals using
static quantile-based thresholds. Each detector used a three-of-five hysteresis rule, which required
three consecutive samples above the threshold to produce a confirmed alarm. This strategy lowered

transient noise while improving alert reliability.

Offline evaluation included training and validation on structured datasets under normal and fault
circumstances. The data was divided into windows for model training (70%), and validation (30%).
For the live testing, the models were distributed using the MQTT pipeline, which subscribed to real-
time turbine topics. The deployment code computed rolling features on the fly, using the same z-
score scaling as offline data, and output results to a CSV log file. The system ran constantly at a

sample rate of about 1 Hz, providing near-real-time inference with low processing overhead.
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Figure 4.1: Overview of the anomaly detection framework and data processing workflow.

4.2 Presentation and Analysis of Results

4.2.1 Offline Evaluation

Before live deployment, the proposed models were tested offline to ensure that they could correctly
discern between healthy and faulty operating states. The viz_by group_thresholds script produced
figures displaying each detector's probability traces under both baseline and induced fault
circumstances. These visualizations, combined with the quantitative results, provided a thorough

knowledge of each detector's strengths and limits.

From a purely quantitative viewpoint, across all models, the Power Deficit detector provided the most
consistent and reliable results. Its recall of 0.714 and F1 score of 0.833 suggest a balanced detection
capability, accurately identifying periods of lower power generation caused by controlled load
disturbances. The Aerodynamic Disturbance detector had the best overall performance, with a recall
of 0.857 and an F1 score of 0.923, indicating good reactivity to airflow interruptions and a low false
alarm rate. The RPM Sensor Fault detector has comparable reliability to the Power Deficit model (F71
= 0.833), reliably identifying sensor drift events but missing tiny fluctuations that remained below the

static threshold.

The electrical fault detector performed moderately, with a recall of 0.571 and an F1 score of 0.727.
It correctly detected major current abnormalities but sometimes failed to respond to lower-amplitude
fluctuations. Finally, the Vibration Health detector had the lowest recall (0.429) and F1 score (0.600),
indicating that the residual vibration feature needed more scaling or recalibration to increase

reactivity to mild mechanical imbalance.
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It is vital to highlight that all detectors have flawless precision (1.00). This result stems from the way
the evaluation framework was designed, with each fault segment evaluated as a positive case for
the accompanying model. As a result, all detections in fault-labelled data were counted as true
positives, with no false positives achievable under these test conditions. Precision values are likely
to vary in a real-world operating situation, where detectors only trigger for specified anomaly types.
Thus, the flawless precision seen here is mostly due to the absence of erroneous triggers in the

controlled dataset, rather than general fault-free performance.

Table 4.1: Summary of mean precision, recall, and F1 scores across all detectors.

Detector Precision Recall F1 Score Interpretation
Power Deficit 1.00 0.714 0.833 High overall reliability; accurately
detected load imbalance with
consistent threshold crossings.
Electrical Fault 1.00 0.571 0.727 Detected major current irregularities

but missed lower-intensity fault

periods.
Aerodynamic 1.00 0.857 0.923 Strong performance; effectively
Disturbance identified airflow disruptions with

minimal false triggers.
RPM Sensor 1.00 0.714 0.833 Reliable detection when sensor drift
Fault occurred; recall could improve with
lower thresholds.
Vibration 1.00 0.429 0.600 Least sensitive model; residual
Health feature scaling reduced
responsiveness to minor

imbalance.

Visual analysis of the charts assist these quantitative findings.

The Aerodynamic Disturbance detector (Figures 4.3 and 4.4) had probabilities that regularly
exceeded the alert level in both baseline and fault segments, indicating that the model was highly
sensitive to transient turbulence. Although this sensitivity enables it to detect actual aerodynamic
interruptions, the high number of warnings during normal operation indicates that its threshold or

decision boundary should be adjusted, or additional feature tuning done, to reduce false triggers.

The Electrical Fault Detector (Figures 4.5 and 4.6) seemed to be the most consistent model visually.
Stable sensor data allowed for a clear delineation between baseline and fault occurrences, and the

minimal number of alarms during baseline operation (one incidence) appears appropriate and
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accurate. Under induced fault conditions, alarms were triggered at the appropriate intervals,

demonstrating that the model behaved consistently when data quality was high.

The Power Deficit detector (Figures 4.7 and 4.8) showed consistent early spikes as the turbine
ascended to a stable operating speed. Once in steady state, the model occasionally delivered
accurate defect detections in response to induced load variations. This pattern implies that initial
startup transients should be filtered or omitted from evaluation windows to avoid misclassifying

typical ramp-up behaviour as errors.

The RPM Sensor Fault detector (Figures 4.9 and 4.10) showed significant variance in anticipated
probability, fluctuating between low and high levels. Despite this volatility, the detector properly
identified sensor anomalies during the fault runs, and the number of alerts generated appeared
reasonable for the fault size used. Some smoothing or threshold change may help to stabilize its

answers in subsequent iterations.

The Vibration Health detector (Figures 4.11 and 4.12) produced alert patterns that were visually like
true mechanical disturbances. Both baseline and fault traces were decent, but their great variability
made them difficult to read at a glance. The warnings within the fault segments corresponded to
produced imbalance occurrences, demonstrating that the detector was functioning properly, even

though the residual vibration feature is still sensitive to noise.

Logistical Regression Aerodynamic Disturbance (Baseline)

T1- High Base T2- Mid Base T3- Low Base T4- Var Base
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5% 4 Alerts (x50)

Anomaly Probability (%)
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0 5000 10000 15000 20000 25000 30000
Sample index

Figure 4.3: Aerodynamic Disturbance - Baseline probability trace.
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Logistical Regression Aerodynamic Disturbance (Faults)
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Figure 4.4: Aerodynamic Disturbance - Fault probability trace.
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Figure 4.5: Electrical Fault - Baseline probability trace.
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Figure 4.6: Electrical Fault - Fault probability trace

Logistical Regression Power Deficit (Baseline)
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Figure 4.7: Power Deficit - Baseline probability trace

22



Logistical Regression Power Deficit (Faults)
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Figure 4.8: Power Deficit - Fault probability trace.

Logistical Regression RPM Sensor Fault (Baseline)

T1- High Base T2- Mid Base T3- Low Base T4- Var Base
L N e L T S L L L EEG SRR
—— Probability
~ === Threshold (50.0%)
&£ 40% A Alerts (x2)
z
S 30% A
o
2
a
> 20% 4
T
E
o
£ 10%
0% + T T T T T T
"] 5000 10000 15000 20000 25000 30000

Sample index

Figure 4.9: RPM Sensor Fault - Baseline probability trace.
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Figure 4.10: RPM Sensor Fault - Fault probability trace.
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Figure 4.11: Vibration Health - Baseline probability trace
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Logistical Regression Vibration Health (Faults)
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Figure 4.12: Vibration Health - Fault probability trace.

Overall, the offline evaluation shows that the anomaly detection system can correctly categorize
multiple anomaly type. These findings corroborate the framework's architecture and indicate that
Logistic Regression models, along with residual feature engineering, provide an interpretable and

computationally economical solution for wind turbine problem identification.

4.2.2 Real-Time Deployment and Results Analysis

Following a relatively complete offline evaluation, the system was deployed live on the VAWT-X
turbine via the MQTT data stream. The real-time test was designed to evaluate the models'
operational dependability under continuous data flow and demonstrate their capacity to do inference

at the edge without cloud help.

During the live deployment, all five detectors were operational, logging outputs every second.
However, only the Power Deficit Detector produced relevant and understandable alerts. A total of 37
unique Power Deficit alert incidents were collected, each representing recognizable decreases in
power production caused by load fluctuations or transient aerodynamic effects. This behaviour

demonstrated that the system could detect true performance issues in real time.

The remaining detectors yielded either continuous zero probability or unreasonably low values (on
the order of 1e—22), indicating that the models were getting incorrect or missing input data. A post-
trial investigation found various possible explanations for this conduct. First, a typographical issue in
the live deployment code's subject configuration (Sesnors/power rather than Sensors/power)
prohibited the power feature from being properly populated. This issue had a direct impact on the
Electrical, Aerodynamic, and Power Deficit detectors, all of which rely on power and current features.
Second, differences between the trained models' feature lists and the live system's generated feature
columns resulted in several features defaulting to zero during runtime. This mismatch resulted in

constant or near-constant input vectors, and so flat probability outputs.

Further investigation of the real-time log revealed that the z-score scaling values calculated from

offine data were not totally suitable for live settings. The mean and standard deviations in
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resid_stats.json resulted in exceptionally low z-scores in streaming data, further compressing model

answers. Finally, the Random Forest regressor calculated residual vibration values necessitated

various contextual features that were occasionally missing from the live stream, resulting in a

practically static z_vib feature and persistent, useless vibration notifications.

Despite these problems, the Power Deficit detector performed consistently because it's essential

features: wind speed, RPM, torque, and power, were generally present and accurately aligned. The

probability trace showed periodic peaks that corresponded to actual changes in turbine load. The

three sample-level alerts in the CSV represented the raw count of times the detector's probability

exceeded its threshold, but the 37 separate alert episodes indicated fault periods clustered by

hysteresis logic.

[ R e Y o A e Tl e e R R e T T e Y R R T e B e B e R e e R o B o e e

CoOo0o0 000 000000000000 o0oDoo
= N I N G G I -GG G I N G G N

[ = Y o e e e R o T e R R e Y o R R e Y o B e B e e e R o B o e e

*Power Deficit Column

=== == R RN RN RN Y- R~ B~ S RS R S S R R~ )

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-

Figure 4.14: Example of live CSV log showing Power deficit anomaly being detected (note the

hysteresis requiring 3 consecutive frames of anomaly to increment)

Table 4.2: Summary of real-time detector performance.

Detector
Power Deficit
Electrical Fault
Aerodynamic
Disturbance

Vibration Health
RPM Sensor Fault

37

Distinct

Episodes

25

Best Understanding as to
why

Valid alerts corresponding to
real power drops
Flat probabilities due to feature
omission
No valid inputs, constant zero
output
Potential scaling mismatch
Inactive during run, likely

conservative threshold



Although only one model was able to be successfully executed, the live deployment still yielded
some positive outcomes. First, the MQTT-based pipeline functioned continuously with no data loss,
demonstrating that the real-time architecture is technically feasible. The inference cycle time per
message stayed below 200 milliseconds, resulting in near-instant alert production. Second, the
Power Deficit Detector's real-world performance verified the idea of edge-deployable predictive
maintenance. The detector's continuous alignment with quantifiable load disturbances revealed the

feasibility of utilizing basic, understandable models for autonomous fault detection.

However, the test demonstrated the vulnerability of machine learning systems to data integrity and
schema consistency. Missing or mislabelled sensor channels passed through the feature pipeline,
can have severe effects on the effectiveness and outcome of the models. These findings emphasize

the need for better input validation, and feature verification in future implementations.

4.3 Summary of Findings from Results

The combined offline and real-time evaluations provide a complete picture of the VAWT-X anomaly
detection framework's performance and operational preparedness. Offline testing demonstrated that
the developed Logistic Regression models, which are supported by residual vibration data, can
accurately classify and interpret diverse turbine fault states. The Power Deficit Detector continuously
displayed the highest accuracy and interpretability, making it the most mature and deployable
component. The electrical and aerodynamic detectors were also reliable, although the RPM Sensor

and Vibration Health detectors require additional calibration to reach strong sensitivity.

The real-time deployment confirmed the functional architecture of the MQTT-based inference
system, demonstrating its ability to perform end-to-end anomaly detection autonomously and with
low latency. Although only the Power Deficit detector generated accurate alarms throughout the live
trial, this result demonstrates that the framework can perform meaningful inference in streaming
situations. The inactive detectors revealed implementation-level issues rather than conceptual flaws.
Misnamed MQTT topics, irregular feature alignment, and mis-scaled z-score parameters all provide

useful refining insights.

In summary, the research met its primary design goals by developing an operational, explainable,
and lightweight anomaly detection framework for small-scale turbines. The offline evaluation
confirmed the analytical accuracy of the technique, whilst the live deployment revealed practical
practicality. These findings help the larger goal of creating scalable, interpretable machine learning

algorithms for predictive maintenance in distributed renewable energy assets.
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CHAPTER 5: DISCUSSION

5.1 Overview

This chapter discusses the results of both the offline evaluation and live deployment of the anomaly
detection system for the VAWT-X turbine. It evaluates the findings reported in Chapter 4 and links
them to the methodology's research goals and objectives. Talking points also delves into the actual
issues that arose during system development, such as data constraints, feature alignment, and
deployment complexity. Finally, it considers how these findings relate to the larger aims of predictive

maintenance and digital twin integration, as well as paths for further improvement.

5.2 Interpretation of Offline Evaluation

The offline study revealed that machine-learning models can accurately categorize the operational
stages of the VAWT-X turbine with a small dataset. All detectors achieved perfect accuracy (1.00),
which means that no false positives were recorded inside the specified fault segments. Precision
levels are predicted to vary in a real-world operational setting since each detector responds
specifically to a specific sort of abnormality. The observed precision thus emphasizes the lack of

false triggers under controlled settings, rather than ubiquitous fault-free performance.

The variation in recall and F71 scores demonstrates the detectors' different sensitivity to fault
magnitude and signal quality. The Aerodynamic Disturbance detector has the greatest F7 score
(0.923) and recall (0.857), indicating significant reactivity to airflow interruptions while remaining
stable in baseline conditions. The Power Deficit and RPM Sensor detectors both demonstrated
balanced performance (F1 = 0.833, recall = 0.714), successfully identifying load differences and
rotational anomalies in most test instances. The Electrical Fault Detector received an F1 score of
0.727, missing certain low-intensity current anomalies while staying accurate for larger electrical
imbalances. The Vibration Health detector was the least sensitive (F7 = 0.600, recall = 0.429),
indicating that under-scaled residual features and cautious threshold settings reduced response to

mild mechanical imbalance.

This data shows that the framework's Logistic Regression models accurately classified turbine
states, with few false alarms and stable probability outputs. However, the variety of recall values
underlines the importance of threshold tweaking in balancing detection sensitivity with stability.
Future versions should use adaptive thresholding or cross-validated quantile calibration to improve

recall while maintaining interpretability.
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5.3 Interpretation of Real-Time Deployment

The live deployment allowed us to see how the anomaly detection models performed under
streaming data situations. The Power Deficit Detector remained completely operational and
displayed a clear response to live changes in turbine load. A total of 37 unique warning occurrences
were detected, each associated with substantial reductions in generated power. This constant

behaviour shows the model's ability to generalize from offline data to real-world operating settings.

The remaining four detectors (Electrical, Aerodynamic, Vibration, and RPM Sensor) provided zero
or near-zero probability values throughout the test. A subsequent examination of the real-time log
and MQTT settings revealed various significant issues. A typographical issue in the MQTT topic list
prevented legitimate power data from reaching the inference step, directly harming many models.
Furthermore, feature alignment inconsistencies between the live pipeline and saved model
configurations caused NaN values to be replaced with zeros, resulting in flat input vectors and static
forecasts. The z-score scaling choices also failed to capture live data variance, reducing probability

to an inadequate range.

Despite these restrictions, the real-time test showed that the system architecture was reliable. The
MQTT pipeline ran continuously, processed data in real time with low latency, and recorded all
inference findings for post-analysis. The successful operation of the Power Deficit Detector in this
setting demonstrated that the underlying model architecture was technically sound. These findings
show that the fundamental problem is not in the machine learning algorithm itself, but in guaranteeing

reliable data handling, topic setting, and scaling consistency in deployment scenarios.

5.4 Reflections on Project Scope and Constraints

The expansion of the project's scope, as well as the practical limits encountered during its
implementation, had a substantial impact on the study's ultimate results. The initial project concept
centred significantly on the creation of a digital twin system for the VAWT-X turbine, combining live
operational data with predictive models within an XMPro data stream and front-end dashboard.
However, early in the project, it became clear that the turbine's readiness and data availability would

impede progress toward that target within the placement timeline.

As a result, the project's focus switched to developing the fundamental predictive maintenance
framework, which could then be integrated into a digital twin architecture, this shift necessitated a
significant overhaul of the methodology and accompanying study documentation. Much of the
original literature review, which focused on digital twin frameworks and high-level integration tactics,
needed to be modified to match the new study's more data-driven, model-focused approach. The

refocus allowed for more technical study of anomaly detection approaches, model deployment, and
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feature engineering, but it also meant that complete integration with the digital twin platform was

postponed for later development.

Time restrictions also played an important influence. The process of installing and testing the
physical turbine, calibrating sensors, and obtaining useable data took up a significant portion of the
allotted project time. This limited the time available for iterative model refining, live data pipeline
debugging, and threshold parameter optimization. As a result, only one model, that being the Power
Deficit Detector, was fully validated in live situations, while the others remained partially
implemented. With more time, these concerns may have been systematically addressed using input

schema validation, dynamic threshold adaption, and extended cross-validation.

Nonetheless, the work made within the deadline indicated both technical capacity and proof of
concept. The system's successful partial deployment demonstrates that the technique is viable and

ready for future development once more data becomes available.

5.5 Lessons Learned and Technical Implications

The process of creating and installing this system provides some practical insights into using
machine learning to small-scale renewable energy systems. The most important lesson involves
data quality and consistency. Even extremely accurate models may fail if live input streams depart
from the expected feature pattern. Future work should incorporate automated schema validation

techniques that detect missing or renamed MQTT topics and warn problems before model inference.

Another important observation is threshold and scaling adaptation. The static thresholds utilized in
this research were adequate for offline validation, however they were less adaptable in dynamic
settings. Adaptive thresholding, which involves recalculating thresholds depending on recent data
windows, has the potential to greatly improve sensitivity and reduce false negatives. Similarly,
changing z-score scaling parameters while in live operation would keep the models calibrated to

real-time sensor variability.

From a system architecture standpoint, the deployment demonstrated that lightweight, interpretable
models may function within an edge computing framework. The entire pipeline operated on local
hardware without external servers, proving the predictive maintenance for tiny turbines can be
achieved without the processing overhead associated with deep learning methods. This is especially
significant in distributed renewable systems where connectivity and computational resources may

be restricted.

Finally, the findings emphasize the need of explainable Al in operational environments. The ability

to understand each model's output using linear coefficients, feature importance, and probability
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thresholds boosts user confidence and makes debugging easier. The trade-off between
interpretability and performance proved acceptable in this case, as the models provided actionable

insights while remaining transparent.

5.6 Future Work

Future development of the VAWT-X anomaly detection system should focus on three main areas:

1. Full Multi-Model Integration: Completing and harmonising the deployment of all five
classifiers within the live MQTT framework. This includes correcting topic schemas, aligning
feature orders, and validating statistical parameters.

2. Digital Twin Integration: Building on the initial concept, the anomaly detection framework
should be embedded within the XMPro digital twin environment. This would enable real-
time visualisation of model outputs alongside operational turbine metrics and provide an
interactive platform for maintenance decision support.

3. Expanded Dataset and Adaptive Learning: Collecting longer-term operational data will
allow the models to be retrained under varied environmental conditions. Integrating online

learning or incremental model updates could further enhance predictive performance.

Furthermore, future iterations should include automated recalibration procedures for z-score scaling
and threshold adjustment, allowing the system to self-correct as environmental and turbine
conditions change. Once these improvements are implemented, the platform could be used as a
prototype for distributed predictive maintenance solutions across various small-scale renewable

assets.

5.7 Chapter Summary

This chapter has gone over the analytical and operational findings of the VAWT-X anomaly detection
architecture. Offline evaluations demonstrated that the models can reliably classify numerous fault
types while remaining interpretable and computationally efficient. The real-time deployment
established proof-of-concept success by establishing continuous live inference and verifying the
system's ability to operate autonomously at the edge. Although only the Power Deficit model worked
as expected during the live test, its performance verified the overall architecture and confirmed that

the model design, data flow, and inference logic were all fundamentally correct.

The lecture also touched on the practical issues that influenced the project, such as time limits, data
limitations, and a shift in emphasis from full digital twin integration to predictive maintenance

modelling. These factors necessitated extensive restructuring but ultimately resulted in a technically
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focused and clearly functioning product. The findings on data integrity, adaptive calibration, and
system explainability lay a solid framework for future study and development of intelligent

maintenance systems for renewable energy infrastructure.

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

The goal of this study was to develop, build, and test an interpretable anomaly detection framework
for the VAWT-X vertical-axis wind turbine. The initiative aims to lay the groundwork for predictive
maintenance and eventual digital twin integration in small-scale renewable energy systems. Despite
changing project limitations, the final framework met its design objectives by proving efficient offline
classification of turbine problems and dependable real-time operation via a MQTT-based

deployment.

The offline evaluation revealed that lightweight Logistic Regression models, with residual vibration
characteristics produced from a Random Forest regressor, can successfully detect numerous fault
categories on a little dataset. The Power Deficit model performed the best overall, with excellent
precision and recall, while the Electrical and Aerodynamic detectors were moderately accurate.
Although the Vibration and RPM Sensor models were less sensitive, their performance justified the
overall notion of employing explainable models for turbine health monitoring. These findings

provided the analytical foundation required for moving to live deployment.

The real-time trial proved the system's technological feasibility in streaming settings. The Power
Deficit detector responded accurately to genuine load changes, generating thirty-seven separate
alert occurrences that corresponded to observed turbine behaviour. The other detectors remained
inactive due to data alignment difficulties, emphasizing the vital significance of comprehensive
schema verification. Nonetheless, the implementation showed steady inference at one-second
intervals, low computing delay, and accurate alarm logging, demonstrating that autonomous, edge-

based predictive maintenance is possible with minimum infrastructure.

An important effect of this initiative was an adaptive adjustment in research direction. Originally
planned as a digital twin and predictive maintenance system, the project was re-scoped to focus on
laying the machine-learning groundwork for such integration. This move, prompted by data
restrictions and turbine readiness, necessitated a significant overhaul of the literature review,
methodology, and results presentation. While the digital twin component is still in the works, the
established framework acts as a useful building block for the greater goal. With more time and data,
the other classifiers can be modified, thresholds dynamically adjusted, and model integration into

the XMPro digital twin environment completed.
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Overall, this effort shows that interpretable machine-learning algorithms can provide a dependable
and scalable solution for early failure detection in distributed wind systems. The findings provide
practical insights into real-time data handling, feature engineering, and model deployment in small-
scale turbines. Future research should concentrate on harmonising the data flow, incorporating
adaptive thresholding, and expanding the deployment across many turbines to enable continuous
learning. In its current form, the framework proves the technical and conceptual feasibility of
intelligent predictive maintenance while also laying the groundwork for extensive digital twin

integration in the renewable energy sector.
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APPENDICES

Appendix 1: XMPro Demonstration Application Interface (Prior Scope)
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Appendix 3: Gantt Chart (Actual)

Appendix 4: Risk Assessment Matrix based on risk consequence and likelihood scoring.
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Appendix 5.1: Project Timeline Gantt Chart (Initial)
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Appendix 6: All Testing Notes

Appendix 6.1: Test 1-high wind base
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Appendix 6.2: Test 2-mid wind base

Picture was not taken.

Appendix 6.3: Test 3-Low wind base
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Appendix 6.4: Test 4-variable wind base

Picture was not taken.

Appendix 6.5: Test 5-Balanced short circuit
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Appendix 6.6: Test 6-Balanced open circuit

Picture was not taken.

Appendix 6.7: Test 7-Unbalanced open circuit
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Appendix 6.8: Test 8-Unbalanced short circuit (line to line short circuit)
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Appendix 6.9: Test 9-R

pm sensor malfunction
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Appendix 6.10: Test 10-Disturbance in aerodynamic blade
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Not -The bubble wrap fell in the middle of the experiment and the sensor readings can be to
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Appendix 6.11: Test 11-Weight imbalance (adding weight)

Picture was not taken

About 200g of weight was attached to one side of the turbine blade.

Appendix 7: Project Source Code Structure
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15_train_residuals_all.py

24 _train_electrical_fault.py
25_train_aero.py
26_train_vibration_health.py

27_train_power_deficit.py

] 28_calc_detector_thresholds.py

29_train_rpm_sensor_fault.py
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